Interaction of gas phase oxalic acid with ammonia and its atmospheric implications.

نویسندگان

  • Xiu-Qiu Peng
  • Yi-Rong Liu
  • Teng Huang
  • Shuai Jiang
  • Wei Huang
چکیده

Oxalic acid is believed to play an important role in the formation and growth of atmospheric organic aerosols. However, as a common organic acid, the understanding of the larger clusters formed by gas phase oxalic acid with multiple ammonia molecules is incomplete. In this work, the structural characteristics and thermodynamics of oxalic acid clusters with up to six ammonia molecules have been investigated at the PW91PW91/6-311++G(3df,3pd) level of theory. We found that oxalic acid forms relatively stable clusters with ammonia molecules, and that ionization events play a key role. The analyses of the thermodynamics and atmospheric relevance indicate that the heterodimer (H2C2O4)(NH3) shows an obvious relative concentration in the atmosphere, and thus likely participates in new particle formation. However, with increasing number of ammonia molecules, the concentration of clusters decreases gradually. Additionally, clusters of oxalic acid with ammonia molecules are predicted to form favorably in low temperature conditions and show high Rayleigh scattering intensities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-cloud oxalate formation in the global troposphere: a 3-D modeling study

Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus o...

متن کامل

Cluster phase chemistry: gas-phase reactions of anionic sodium salts of dicarboxylic acid clusters with water molecules.

A homologous series of anionic gas-phase clusters of dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid) generated via electrospray ionization (ESI) are investigated using collision-induced dissociation (CID). Sodiated clusters with the composition (Na(+))(2)(n+1)(dicarboxylate(2-)(n+1) for singly charged anionic clusters, where n = 1-4, are observed as...

متن کامل

Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments

Aqueous-phase photooxidation of glyoxal, a ubiquitous water-soluble gas-phase oxidation product of many compounds, is a potentially important global and regional source of oxalic acid and secondary organic aerosol (SOA). Reaction kinetics and product analysis are needed to validate and refine current aqueous-phase mechanisms to facilitate prediction of in-cloud oxalic acid and SOA formation fro...

متن کامل

Phase of atmospheric secondary organic material affects its reactivity.

The interconversion of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest, especially for particles of secondary organic material (SOM). Herein, the influence of phase on ammonia uptake and subsequent particle-phase reactions was investigated for aerosol particles of adipic acid and α-pinene ozonolysis SOM. The nitrogen content of the ...

متن کامل

A DFT study of interaction of folic acid drug on functionalized single-walled Carbon Nanotubes

In this work, the structural and electronic properties of folic acid molecule on functionalized (7,0)zigzag single-walled carbon nanotube was studied in gas phase on the basis of density functionaltheory (DFT). Furthermore, covalent interaction of folic acid with single-walled carbon nanotube wasinvestigated and its quantum molecular descriptors and binding energies were calculated. The DFTB3LY...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 14  شماره 

صفحات  -

تاریخ انتشار 2015